Bibliografía Álgebras de Lie

Bibliografía:

0.

¿SUSY al fin?

The ANITA Anomalous Events as Signatures of a Beyond Standard Model Particle, and Supporting Observations from IceCube

https://arxiv.org/abs/1809.09615
  1.  C. L. Siegel,  Symplectic Geometry” Academic Press, New York, 1964
  2. A. T. Fomenko,  Symplectic Geometry, Gordon and Breach, New York, 1988
  3. V. Guillemin and S. Sternberg,  Symplectic Techniques in Physics, Cambridge University, Cambridge and New York, 1984
  4. T. Bröcker & T. Dieck, Representation Theory of Compact Lie GroupsSpringer-Verlag (1985)
  5. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press (1978)
  6. Lie Groups, Li Algebras. http://www.cis.upenn.edu/~cis610/cis61005sl8.pdf
  7. A. Habib, Introduction to Lie Algebras. http://www.isibang.ac.in/~statmath/conferences/gt/Lie_Algebra_Lec2.pdf
  8. R. Howe, Very Basic Lie TheoryAmerican Mathematical Monthly, 90 (1983) , 600-623.
  9. H. Weyl, The Theory of Groups and Quantum Mechanics, Dover New York (1931)
  10. V.S. Varadarajan, Lie Groups, Lie Algebras and their Representations, Springer-Verlag (1974)
  11. J.P. Serre, Linear Representations of Finite GroupsSpringer-Verlag
  12. V. Guillemin, Symplectic Techniques in PhysicsCambridge University Press (1984)
  13. W. Rindler, Relativity, Oxford University Press (2006)
  14. Howard Georgi, Lie Algebras in Particle Theories, from Isospin to Unified Theories, Westview Press, Boulder, Colorado, 1999
  15. Howard Georgi, The state of the art – Gauge Theories in Particles and Fields– 1974, ed. Carl E. Carlson, AIP Conference Proceedings 23, 1975, pp. 575–582.
  16. Andrzej Derdzinski, Geometry of the Standard Model of Elementary Particles, Springer, Berlin, 1992
  17. H. Goldstein, Classical Mechanics, Addison-Wesley (1980)
  18. R. Penrose, The Road to RealityVintage Books (2007)

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *

Rating*