Bibliografía:
0.
¿SUSY al fin?
The ANITA Anomalous Events as Signatures of a Beyond Standard Model Particle, and Supporting Observations from IceCube
https://arxiv.org/abs/1809.09615
- C. L. Siegel, Symplectic Geometry” Academic Press, New York, 1964
- A. T. Fomenko, Symplectic Geometry, Gordon and Breach, New York, 1988
- V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge University, Cambridge and New York, 1984
- T. Bröcker & T. Dieck, Representation Theory of Compact Lie Groups, Springer-Verlag (1985)
- S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press (1978)
- Lie Groups, Li Algebras. http://www.cis.upenn.edu/~cis610/cis61005sl8.pdf
- A. Habib, Introduction to Lie Algebras. http://www.isibang.ac.in/~statmath/conferences/gt/Lie_Algebra_Lec2.pdf
- R. Howe, Very Basic Lie Theory, American Mathematical Monthly, 90 (1983) , 600-623.
- H. Weyl, The Theory of Groups and Quantum Mechanics, Dover New York (1931)
- V.S. Varadarajan, Lie Groups, Lie Algebras and their Representations, Springer-Verlag (1974)
- J.P. Serre, Linear Representations of Finite Groups, Springer-Verlag
- V. Guillemin, Symplectic Techniques in Physics, Cambridge University Press (1984)
- W. Rindler, Relativity, Oxford University Press (2006)
- Howard Georgi, Lie Algebras in Particle Theories, from Isospin to Unified Theories, Westview Press, Boulder, Colorado, 1999
- Howard Georgi, The state of the art – Gauge Theories in Particles and Fields– 1974, ed. Carl E. Carlson, AIP Conference Proceedings 23, 1975, pp. 575–582.
- Andrzej Derdzinski, Geometry of the Standard Model of Elementary Particles, Springer, Berlin, 1992
- H. Goldstein, Classical Mechanics, Addison-Wesley (1980)
- R. Penrose, The Road to Reality, Vintage Books (2007)