Bibliografía Álgebras de Lie

Bibliografía:
  1. T. Bröcker & T. Dieck, Representation Theory of Compact Lie GroupsSpringer-Verlag (1985)
  2. S. Helgason,Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press (1978)
  3. http://www.cis.upenn.edu/~cis610/cis61005sl8.pdf
  4. http://www.isibang.ac.in/~statmath/conferences/gt/Lie_Algebra_Lec2.pdf
  5. R. Howe, Very Basic Lie TheoryAmerican Mathematical Monthly, 90 (1983) , 600-623.
  6. H. Weyl, The Theory of Groups and Quantum Mechanics, Dover New York (1931)
  7. V.S. Varadarajan, Lie Groups, Lie Algebras and their Representations, Springer-Verlag (1974)
  8. J.P. Serre, Linear Representations of Finite GroupsSpringer-Verlag
  9. V. Guillemin, Symplectic Techniques in PhysicsCambridge University Press (1984)
  10. W. Rindler, Relativity, Oxford University Press (2006)
  11. Howard Georgi, Lie Algebras in Particle Theories, from Isospin to Unified Theories, Westview Press, Boulder, Colorado, 1999
  12. Howard Georgi, The state of the art – Gauge Theories in Particles and Fields– 1974, ed. Carl E. Carlson, AIP Conference Proceedings 23, 1975, pp. 575–582.
  13. Andrzej Derdzinski, Geometry of the Standard Model of Elementary Particles, Springer, Berlin, 1992
  14. H. Goldstein, Classical Mechanics, Addison-Wesley (1980)
  15. R. Penrose, The Road to RealityVintage Books (2007)
 

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *

Rating*