Para las bases matemáticas sobre Análisis Funcional:

  1. Conway, A course in functional analysis, New york, Springer, 1990.
  2. Abramovich, Invitation to operator theory, (Graduate studies in mathematics, Providence, Rhode Island) 2002.
  3. Kolmogorov, Elements of theory of functional analysis, vol(I), Metric and normed spaces, Rochester: Graylock Press, 1957

Para Geometría Diferencial (para físicos):

  1. R. Wald, General Relativity, University of Chicago Press.
  2. Misner, Thorne, Wheeler, Gravitation.
  3. Foster, James, Nightingale. A Sohrt course in General Relativity. Springer.
  4. C. Isham, Modern Differential Geometry for Physicists, World Scientific, Singapore, 1999.
  5. G.L. Naber, Topology, Geometry and Gauge Fields: Foundations, Springer, Berlin, 1997.
  6. G.L. Naber, Topology, Geometry and Gauge Fields: Interactions,, Springer, Berlin, 2000.

Bibliografía EPR- Pitowsky (NUEVO!):

  1. A. Einstein, B. Podolsky and N. Rosen, Can Quantum Mechanical Description of Physical Reality Be Considered Complete? , Physical Review 47 (1935) 777
  2. Bell J.S., On the EPR Paradox, Physics 1 (1964) 195
  3. E. Santos, The Bell inequalities as test of classical logic, Physics Letters A 115 (1986) 363
  4. I. Pitowsky, Quantum Probability – Quantum Logic, Lectures Notes on Physics 321, Springer Berlin 1989.
  5. I. Pitowsky, Correlation Polytopes: Their Geometry and Complexity, Mathematical Programming A50, 395-414 (1991).


  1. Auletta, Foundations and Interpretation of Quantum Mechanichs…, World Scientific, Singapure.
  2. Bacciagaluppi in The Stanford Encyclopedia of Phylosophy.
  3. Zeh, Decoherence: Theoretical, Experimental and Conceptual Problems, Springer Berlin. e-print: quant-ph/9905004.
  4. Modal Interpretations of Quantum Mechanics.
  5. Zurek. e-print: quant-ph/0405161.
  6. (NUEVO!) (Modal interpretations of Quantum Mechanics)
  7. Ghirardi, Rimini, Weber, 1986, Phys. Rev. D 34, 470.
  8. Ghirardi, Rimini, Weber, 1987, Phys. Rev. D 36, 3287.

Bibliografía para Grupos de Lie y Álgebras de Lie:

  1. S. Stenberg, Group Theory and Physics, Cambridge U. Press, Cambridge, 1995.
  2. Ta-Pei Cheng & Ling-Fong Li, Gauge Theory of Elementary Particle Physics, Clarendon Press Oxford.
  3. R. Slansky, Group Theory for Unified Model Building, Physics Reports, 79, No. 1 (1981) 1-128.
  4. Andrzej Derdzinski, Geometry of Standard Model of Elementary Particles, Springer, Berlin, 1992.
  5. W. Miller, Symmetry Groups and their Applications, Academic Press, New York, 1972.
  6. R. Gilmore, Lie Groups, Lie Algebras and some of their Applications, Wiley, New York, 1974.
  7. R.G. Wybourne, Classical Groups for Physicists, Wiley, New York, 1974.
  8. T. Bröker & t. Diek, Representations of Compact Lie Groups, Springer-Verlag, 1985.
  9. A. W. Knapp, Lie Gropus, Lie Algebras and Cohomology, Princetion University Press, 1988.
  10. H. Georgi, Lie Algebras in Particle Physics: From Isospin to Grand Unified Theories,  Westview Press, Boulder, Colorado, 1999.
  11. H. Georgi & S. Glashow,  Unity of all elementary particle forces,  Phys. Rev. Lett. 32 (8), Feb. 1974, 438-441.

Schrodinger Katze

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *