Bibliografía

0. J.B: Carrell, Groups, Matrices and Vector Spaces: A Group Approach to Linear Algebra. Springer

1. M. E. Peskin, Supersymmetry in Elementary Particle Physics, arXiv:hep-th 0801.1928v1

2. P. Binetruy, Supersymmetry: Theory, Experiment, and Cosmology. (Oxford U. Press, 2004)
3. Y. Srivastava, Supersymmetry, Superfields and Supergravity: an Introduction. (Bristol:Institute
of Physics Publishing)
4. M. Drees, An Introduction to Supersymmetry, http://arxiv.org/PS_cache/hep-ph/pdf/9611/9611409v1.pdf.

5. The Wess-Zumino model, www-personal.umich.edu/~larsenf/Lecture2.pdf
6. J. Wess and J. Bagger, Supersymmetry and Supergravity. (Princeton U. Press, 1992)
7. J. D. Lykken, Introduction to Supersymmetry, http://arxiv.org/PS_cache/hep-th/pdf/9612/9612114v1.pdf.
8. R. Haag, J. T. Lopuszanski and M. Sohnius, All Possible Generators Of Supersymmetries Of The S Matrix, Nucl. Phys. B 88, 257 (1975)
9. Callan, et. al. Supersymmetric String Solitons, hep-th/9112030
10. K.S. Stelle, Lectures on Supergravity p-Branes, hep-th/9701088
11. S. R. Coleman and J. Mandula, Phys. Rev. 159 (1967) 1251
12. J. Polchinski, String Theory (Vol. I & II). (Cambridge University Press, 1998)
13. E. Kiritsis, String Theory in a Nutshell. (Princeton University Press, 2007)

Bibliografía Complementaria:

0. V. &T. Ivancevic, Lecture Notes in Lie Groups, arXiv:1104.1106v2
1. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press (1978)(NUEVO!)
2. www.cis.upenn.edu/~cis610/geombchap14.pdf
cis.upenn.edu (Breve  introducción a las Álgebras de Lie) (NUEVO!!)
3. Ta-Pei Cheng & Ling-Fong Li, Gauge Theory of Elementary Particle Physics, Clarendon Press Oxford.
4. R. Slansky, Group Theory for Unified Model Building, Physics Reports, 79, No. 1 (1981) 1-128.
5. Andrzej Derdzinski, Geometry of Standard Model of Elementary Particles, Springer, Berlin, 1992.
6. W. Miller, Symmetry Groups and their Applications, Academic Press, New York, 1972.
7. R. Gilmore, Lie Groups, Lie Algebras and some of their applications, Wiley, New York, 1974.
8. R.G. Wybourne, Classical Groups for Physicists, Wiley, New York, 1974.
9. T. Bröker & tom Diek, Representations of Compact Lie Groups, Springer-Verlag, 1985.
10. A. W. Knapp, Lie Gropus, Lie Algebras and Cohomology, Princetion University Press, 1988.

Para el tema de representaciones spinoriales quizá encuentren útiles:

. Fun and Supersymmetry: https://www.physics.uci.edu/~tanedo/files/notes/FlipSUSY.pdf
. El Apéndice A del libro de Wess & Bagger (SUPERSYMMETRY & SUPERGRAVITY)
. El Apéndice B del libro de Binétruy (SUPERSYMMETRY)
. Este peiper (Sic): https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_15_16/tv_qm2/vorlesung/Spinors-4D.pdf

SUSY